A homological definition of the HOMFLY polynomial

نویسندگان

  • STEPHEN BIGELOW
  • Stephen Bigelow
چکیده

We give a new definition of the knot invariant associated to the Lie algebra suNC1 . Knowing these for all N is equivalent to knowing the HOMFLY polynomial. Our definition requires that the knot or link be presented as the plat closure of a braid. The invariant is then a homological intersection pairing between two immersed manifolds in a configuration space of points in a disk. This generalizes previous work on the Jones polynomial, which is the case N D 1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homological algebra of knots and BPS states

It is known that knot homologies admit a physical description as spaces of open BPS states. We study operators and algebras acting on these spaces. This leads to a very rich story, which involves wall crossing phenomena, algebras of closed BPS states acting on spaces of open BPS states, and deformations of Landau-Ginzburg models. One important application to knot homologies is the existence of ...

متن کامل

MATRIX FACTORIZATIONS AND INTERTWINERS OF THE FUNDAMENTAL REPRESENTATIONS OF QUANTUM GROUP Uq(sln)

We want to construct a homological link invariant whose Euler characteristic is MOY polynomial as Khovanov and Rozansky constructed a categorification of HOMFLY polynomial. The present paper gives the first step to construct a categorification of MOY polynomial. For the essential colored planar diagrams with additional data which is a sequence naturally induced by coloring, we define matrix fac...

متن کامل

Inner products on the Hecke algebra of the braid group

We point out that the Homfly polynomial (that is to say, Ocneanu’s trace functional) contains two polynomial-valued inner products on the Hecke algebra representation of Artin’s braid group. These bear a close connection to the Morton–Franks–Williams inequality. In these structures, the sets of positive, respectively negative permutation braids become orthonormal bases. In the second case, many...

متن کامل

The combinatorics of knot invariants arising from the study of Macdonald polynomials

This chapter gives an expository account of some unexpected connections which have arisen over the last few years between Macdonald polynomials, invariants of torus knots, and lattice path combinatorics. The study of polynomial knot invariants is a well-known branch of topology which originated in the 1920’s with the one-parameter Alexander polynomial [Ale28]. In the early 1980’s Jones [Jon85] ...

متن کامل

On the Homfly and Tutte Polynomials

A celebrated result of F. Jaeger states that the Tutte polynomial of a planar graph is determined by the HOMFLY polynomial of an associated link. Here we are interested in the converse of this result. We consider the question ‘to what extent does the Tutte polynomial determine the HOMFLY polynomial of any knot?’ We show that the HOMFLY polynomial of a knot is determined by Tutte polynomials of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006